Войти
Windows. Настройка. Интернет. Обслуживание. Компьютеры. Безопасность
  • Какой видеорегистратор выбрать на матрице Sony Starvis IMX291?
  • Ноутбук ASUS X501A - новый бестселлер в бюджетном сегменте Какая карта стоит на ноутбуке asus x501a
  • Драйверы для ноутбука HP Pavilion g6 Скачать программы для hp pavilion g6
  • Как выбрать стол под ноутбук
  • Презентация на тему "направление электрического тока"
  • Экстранет: что это, зачем нужно и как функционирует?
  • Что такое GPS в телефоне? GPS в смартфоне: что это и как работает

    Что такое GPS в телефоне? GPS в смартфоне: что это и как работает

    Смартфоны давно перестали быть простыми «звонилками». Своим владельцам они открыли массу новых возможностей.

    На первом месте полноценный скоростной доступ в интернет и общение в социальных сетях и мессенджерах. Но не менее востребовано и GPS-позиционирование, о котором мы сейчас подробно расскажем.

    Что такое GPS?

    GPS - система навигации, которая определяет местоположение смартфона, строит маршруты и позволяет найти нужный объект на карте.

    Практически в каждый современный гаджет встроен GPS-модуль. Это антенна, настроенная на сигнал спутников системы геолокации GPS. Изначально она была разработана в США для военных целей, но позже ее сигнал стал доступен всем желающим. GPS-модуль гаджет является принимающей антенной с усилителем, но передавать сигнал она не может. Получая сигнал от спутников, смартфон определяет координаты своего местоположения.

    Практически каждый современный хотя бы раз пользовался GPS-навигацией на смартфоне или планшете. Потребность в ней может возникнуть в любой момент у людей разных профессий и разного рода занятий. Она необходима водителям, курьерам, охотникам, рыболовам и даже простым пешеходам, оказавшимся в незнакомом городе. Благодаря такой навигации можно определить свое местонахождение, найти нужный объект на карте, выстроить маршрут, а при наличии доступа в интернет объехать пробки.

    Оффлайн-карты для GPS

    Google разработала для своей операционной системы Android специальное геолокационное приложение - Google Maps. Оно быстро находит спутники, разрабатывает маршруты до объектов и предлагает альтернативы. К сожалению, при отсутствии зоны покрытия сотовой сети Google Maps не работает, так как географические карты тут подгружаются через интернет.

    Для навигации без использования сети лучшим выходом будет скачать приложения с поддержкой оффлайн-карт, например, Maps.me, Navitel и 2GIS. Также можно установить приложение «Карты: транспорт и навигация» для Google Maps.

    В этом случае придется расходовать интернет-трафик для загрузки карт не придется - они будут всегда в вашем устройстве, независимо от местоположения. Особенно это актуально при нахождении за границей, так как стоимость роуминга для доступа в интернет весьма высока.

    Как включить GPS на Android?

    Активация GPS-модуля в операционной системе Android возможна двумя способами:

    • Верхняя шторка. Проведите по дисплею сверху вниз и в открывшемся меню нажмите кнопку «Местоположение», «Геолокация» или «Геоданные» (зависит от версии Android).
    • В настройках Android найдите пункт аналогичные пункты передвиньте флажок в положение «Включено».

    Во время активной работы навигационной системы смартфона заряд его аккумулятора начинает расходоваться достаточно активно, поэтому стоит позаботиться о дополнительных источниках питания. Например, за рулем нужно воспользоваться автомобильной зарядкой, а при передвижении на велосипеде или пешком - .

    Также стоит помнить, что уверенный прием спутникового сигнала возможен на открытой местности, поэтому при нахождении в помещении или туннеле геолокация становится невозможной. Пасмурная погода также влияет - из-за туч устройство дольше ищет спутники и менее точно определяет свои координаты.

    Не так давно GPS была единственной системой геолокации, поэтому в ранних версиях Android упоминалась только она, а кнопка активации службы так и называлась. С 2010 года полноценно заработала российская , а с 2012 - .

    Спутниковая навигация GPS давно уже является стандартом для создания систем позиционирования и активно применяется в различных трекерах и навигаторах. В проектах Arduino GPS интегрируется с помощью различных модулей, не требующих знания теоретических основ. Но настоящему инженеру должно быть интересно разобраться со принципом и схемой работы GPS, чтобы лучше понимать возможности и ограничения этой технологии.

    Схема работы GPS

    GPS – это спутниковая навигационная система, разработанная Министерством обороны США, которая определяет точные координаты и время. Работает в любой точке Земли в любых погодных условиях. GPS состоит из трех частей – спутников, станций на Земле и приемников сигнала.

    Идея создания спутниковой навигационной системы зародилась еще в 50-е годы прошлого столетия. Американская группа ученых, наблюдающая за запуском советских спутников, заметила, что при приближении спутника частота сигнала увеличивается и уменьшается при его отдалении. Это позволило понять, что возможно измерить положение и скорость спутника, зная свои координаты на Земле, и наоборот. Огромную роль в развитии навигационной системы сыграл запуск спутников на низкую околоземную орбиту. А в 1973 году была создана программа «DNSS» («NavStar»), по этой программе спутники запускались на среднюю околоземную орбиту. Название GPS программа получила в том же 1973 году.

    Система GPS на данный момент используется не только в военной области, но и в гражданских целях. Сфер применения GPS много:

    • Мобильная связь;
    • Тектоника плит – происходит слежение за колебаниями плит;
    • Определение сейсмической активности;
    • Спутниковое отслеживание транспорта – можно проводить мониторинг за положением, скоростью транспорта и контролировать их движение;
    • Геодезия – определение точных границ земельных участков;
    • Картография;
    • Навигация;
    • Игры, геотегинт и прочие развлекательные области.

    Важнейшим недостатком системы можно считать невозможность получения сигнала при определенных условиях. Рабочие частоты GPS лежат в дециметровом диапазоне волн. Это приводит к тому, что уровень сигнала может снизиться из-за высокой облачности, плотной листвы деревьев. Радиоисточники, глушилки, а в редких случаях даже магнитные бури также могут мешать нормальной передаче сигнала. Точность определения данных будет ухудшаться в приполярных районах, так как спутники невысоко поднимаются над Землей.

    Навигация без GPS

    Поправки в полученные уравнения вносит расхождение между расчетным и фактическим положением спутника. Погрешность, которая возникает в результате этого, называется эфемеридной и составляет от 1 до 5 метров. Также свой вклад вносят интерференция, атмосферное давление, влажность, температура, влияние ионосферы и атмосферы. Суммарно совокупность всех ошибок может довести погрешность до 100 метров. Некоторые ошибки можно устранить математически.

    Чтобы уменьшить все погрешности, используют дифференциальный режим GPS. В нем приемник получает по радиоканалу все необходимые поправки к координатам от базовой станции. Итоговая точность измерения достигает 1-5 метров. При дифференциальном режиме существует 2 метода корректировки полученных данных – это коррекция самих координат и коррекция навигационных параметров. Первый метод использовать неудобно, так как все пользователи должны работать по одним и тем же спутникам. Во втором случае значительно увеличивается сложность самой аппаратуры для определения местоположения.

    Существует новый класс систем, который увеличивает точность измерения до 1 см. Огромное влияние на точность оказывает угол между направлениями на спутники. При большом угле местоположение будет определяться с большей точностью.

    Точность измерения может быть искусственно снижена Министерством обороны США. Для этого на устройствах навигации устанавливается специальный режим S/A – ограниченный доступ. Режим разработан в военных целях, чтобы не дать противнику преимущества в определении точных координат. С мая 2000 года режим ограниченного доступа был отменен.

    Все источники ошибок можно разделить на несколько групп:

    • Погрешность в вычислении орбит;
    • Ошибки, связанные с приемником;
    • Ошибки, связанные с многократным отражением сигнала от препятствий;
    • Ионосфера, тропосферные задержки сигнала;
    • Геометрия расположения спутников.

    Основные характеристики

    В систему GPS входит 24 искусственных спутника Земли, сеть наземных станций слежения и навигационные приемники. Станции наблюдения требуются для определения и контроля параметров орбит, вычисления баллистических характеристик, регулировка отклонения от траекторий движения, контроль аппаратуры на бору космических аппаратов.

    Характеристики навигационных систем GPS :

    • Количество спутников – 26, 21 основной, 5 запасных;
    • Количество орбитальных плоскостей – 6;
    • Высота орбиты – 20000 км;
    • Срок эксплуатации спутников – 7,5 лет;
    • Рабочие частоты – L1=1575,42 МГц; L2=12275,6МГц, мощность 50 Вт и 8 Вт соответственно;
    • Надежность навигационного определения – 95%.

    Навигационные приемники бывают нескольких типов – портативные, стационарные и авиационные. Приемники также характеризуются рядом параметров:

    • Количество каналов – в современных приемников используется от 12 до 20 каналов;
    • Тип антенны;
    • Наличие картографической поддержки;
    • Тип дисплея;
    • Дополнительные функции;
    • Различные технические характеристики – материалы, прочность, защита от влаги, чувствительность, объем памяти и другие.

    Принцип действия самого навигатора – в первую очередь устройство пытается связаться с навигационным спутником. Как только связь будет установлена, происходит передача альманаха, то есть информации об орбитах спутников, находящихся в рамках одной навигационной системы. Связи с одним только спутником недостаточно для получения точного местоположения, поэтому оставшиеся спутники передают навигатору свои эфемериды, необходимые для определения отклонений, коэффициентов возмущения и других параметров.

    Холодный, теплый и горячий старт GPS навигатора

    Включив навигатор впервые или после долгого перерыва, начинается долгое ожидание для получения данных. Долгое время ожидания связано с тем, что в памяти навигатора отсутствуют либо устарели альманах и эфемериды, поэтому устройство должно выполнить ряд действий по получению или обновлению данных. Время ожидания, или так называемое время холодного старта, зависит от различных показателей – качество приемника, состояние атмосферы, шумы, количество спутников в зоне видимости.

    Чтобы начать свою работу, навигатор должен:

    • Найти спутник и установить с ним связь;
    • Получить альманах и сохранить его в памяти;
    • Получить эфемериды от спутника и сохранить их;
    • Найти еще три спутника и установить с ними связь, получить от них эфемериды;
    • Вычислить координаты при помощи эфемерид и местоположения спутников.

    Только пройдя весь этот цикл, устройство начнет работать. Такой запуск и называется холодным стартом .

    Горячий старт значительно отличается от холодного. В памяти навигатора уже имеется актуальный на данный момент альманах и эфемериды. Данные для альманаха действительны в течение 30 дней, эфемерид – в течение 30 минут. Из этого следует, что устройство выключалось на непродолжительное время. При горячем старте алгоритм будет проще – устройство устанавливает связь со спутником, при необходимости обновляет эфемериды и вычисляет местоположение.

    Существует теплый старт – в этом случае альманах является актуальным, а эфемериды нужно обновить. Времени на это затрачивается немного больше, чем на горячий старт, но значительно меньше, чем на холодный.

    Ограничения на покупку и использование самодельных модулей GPS

    Российское законодательство требует от производителей уменьшать точность определения приемников. Работать с незагрубленной точностью может производиться только при наличии у пользователя специализированной лицензии.

    Под запретом в Российской Федерации находятся специальные технические средства, предназначенные для негласного получения информации (СТС НПИ). К таковым относятся GPS трекеры, которые используются для негласного контроля над перемещением транспорта и прочих объектов. Основной признак незаконного технического средства – его скрытность. Поэтому перед приобретением устройства нужно внимательно изучить его характеристики, внешний вид, на наличие скрытых функций, а также просмотреть необходимые сертификаты соответствия.

    Также важно, в каком виде продается устройство. В разобранном виде прибор может не относиться к СТС НПИ. Но при сборе готовое устройство уже может относиться к запрещенным.

    ГЛОБАЛЬНОГО ПОЗИЦИОНИРОВАНИЯ СИСТЕМА (англ. Global Positioning System, сокр. GPS; иногда называется ГСМ — глобальная система местоопределения), радиосистема определения местоположения, использующая навигационные спутники. Такие системы обеспечивают круглосуточную информацию о трехмерном положении, скорости и времени для пользователей, обладающих соответствующим оборудованием (GPS-приемник; Glospace) и находящихся на или вблизи земной поверхности (а иногда и вне ее). Первой системой GPS, широко доступной гражданским пользователям, стала NAVSTAR, обслуживаемая Министерством обороны США. Своя система была разработана и в СССР, но использовалась исключительно для военных целей (до 1991 использование GPS на территории СССР было вообще запрещено, кроме военных). Первый спутник ГЛОНАСС был выведен Советским Союзом на орбиту 12 октября 1982. 24 сентября 1993 года система была официально принята в эксплуатацию. Необходимое число спутников, 24, было достигнуто к 1995, но в дальнейшем из-за экономических и политических трудностей орбитальная группировка сократилась. В 2007 начато коммерческое использование отечественной системы ГЛОНАСС (сокр. от Глобальная навигационная спутниковая система). Находится в стадии разработки система «Галилео», развиваемая странами ЕС.

    Американская система NAVSTAR началась с запуска первого спутника в феврале 1978.

    Для получения информации о скорости большинство навигационных приемников используют эффект Доплера. Систему образуют 24 спутника, находящиеся на точно заданных орбитах. Они передают непрерывные сигналы приемникам на суше, в море, в воздухе и с космосе. GPS служит для определения местоположения, навигации, картографирования, прокладки маршрутов, отсчета времени и синхронизации событий. Орбиты спутников располагаются примерно между 60 градусами северной и южной широты. Этим достигается то, что сигнал от хотя бы некоторых спутников может приниматься повсеместно в любое время.

    Приемное устройство GPS использует спутниковые сигналы для измерения расстояния от каждого от четырех (или больше) спутников, которые в этот момент находятся в его поле зрения. Альманах (астрономический календарь) в приемном устройстве, который обновляется корректирующими сигналами со спутников, определяет, где именно находятся сейчас спутники. Зная положение четырех спутников и расстояние до каждого из них, приемник может вычислить скорость своего движения. Стандартные приемники могут фиксировать местоположение с точностью в несколько метров и время — до 1 миллионной секунды. Новейшие приемники имеют точность до нескольких сантиметров.

    GPS обеспечивает единый мировой стандарт для измерения пространства и времени. Ее точность позволяет самолетам летать ближе друг к другу, по более прямым маршрутам, повышает безопасность полетов.

    Сигнал NAVSTAR содержит т. н. «псевдослучайный код» (PRN - pseudo-random code), эфимерис (ephimeris) и альманах (almanach). Псевдослучайный код служит для идентификации передающего спутника. Все они пронумерованы от 1 до 32 и этот номер показывается на экране GPS-приемника во время его работы. Количество PRN-номеров больше, чем число спутников (24), т. к. это облегчает обслуживание GPS-сети: новый спутник может быть запущен, проверен и введен в эксплуатацию еще до того, как старый выйдет из строя. Такому спутнику просто будет присвоен новый номер (от 1 до 32).

    Данные эфимериса, постоянно передаваемые каждым спутником, содержат такую важную информацию, как состояние спутника (рабочее или нерабочее), текущая дата и время. Данные альманаха говорят о том, где в течение дня должны находиться все GPS-спутники. Каждый из них передает альманах, содержащий параметры своей орбиты, а также всех других спутников системы.

    Двадцать четыре спутника вращаются вокруг Земли на высоте ок. 20 тыс. км. На каждой из шести орбитальных плоскостей располагается по четыре спутника. Несмотря на то, что орбиты точно выверены, ошибки все же случаются и спутники передают на приемники GPS навигационные поправки для обновления альманахов. Навигационные поправки сообщаются спутникам наземными станциями, которые непрерывно следят за их местоположением и скоростью.

    Определение дальности

    Приемник GPS определяет свое положение путем вычисления расстояния до каждого из четырех спутников, точное местоположение которых известно. Каждый спутник передает сигналы; на то, чтобы они достигли приемника, требуется определенное время. Встроенные часы приемника синхронизированы с атомными часами спутников, что позволяет вычислять время прохождения сигналов. Расстояние до каждого спутника вычисляется по времени прохождения сигнала и скорости распространения радиоволн. С помощью метода, называемого триангуляцией, измеренные расстояния объединяются с данными о положении спутников, и это позволяет определить местоположение приемника.

    GPS (Global Positioning System, система глобального позиционирования) — система определения местоположения объектов, основанная на использовании искусственных спутников Земли. Точность системы от 2 до 100 м в зависимости от вида терминального оборудования. GPS-navigators — широкий по практическому назначению и конструктивному исполнению класс устройств, предназначенных для определения местоположения объектов и определения параметров их движения непосредственно с мест их нахождения или на расстоянии. В основе принципов их построения лежит использование GPS, вычислительной техники и телекоммуникационных систем и сетей, в первую очередь Интернета. GPS-навигаторы нашли распространение в военном деле, на всех видах транспорта и в быту. Достижения микроэлектроники и вычислительной техники позволили сократить размеры терминального оборудования, устанавливаемого на подвижных объектах при одновременном повышении их функциональных и эксплуатационных характеристик. В результате появились различные модификации, предназначенные для персонального использования вне транспортной среды (непосредственно человеком), в частности, устанавливаемые на КПК и ноутбуках. К малогабаритным GPS-навигаторам можно отнести GPS-локаторы и часы-навигаторы. GPS-locators обеспечивают контроль (в том числе круглосуточный) местонахождения объектов слежения, например, детей, условно осужденных лиц, людей, страдающих болезнью Альцгеймера.

    ГЛОНАСС (Глобальная навигационная спутниковая система) — российский аналог GPS. В июне 2005 года постановлением правительства РФ принято решение о поэтапном (до 1 января 2009 года) оснащении аппаратурой ГЛОНАСС (или комбинированными средствами ГЛОНАСС/GPS) космических аппаратов, воздушных, морских и речных судов, автомобильного и железнодорожного транспорта, используемого для перевозки пассажиров, специальных или опасных грузов, а также приборов и оборудования, применяемых при проведении геодезических и кадастровых работ.

    Часы-навигаторы — часы, снабженные GPS-приемниками. Часы-навигаторы имеют габариты обычных наручных часов, в них реализованы функции определения местоположения (долгота и широта), отправная точка пути и расстояние до места движения, текущая скорость, промежуточные пункты, направления между ними. Часы-навигаторы могут связываться с компьютером для передачи и обработки GPS-данных, импортировать и просматривать растровые изображения карт (в форматах JPEG и BMP), планировать перемещение по заданному маршруту.

    Первоначально GPS была создана министерством обороны США, предназначалась для военных нужд и имела название Navstar (Navigaion System with Time and Ranging — навигационная система с возможностью определения времени и расстояния). Система Navstar имела цель обеспечить военных возможностью определять координаты объекта в любой точке поверхности Земли. В дальнейшем было разрешено использование системы в коммерческих целях. До 2000 года все пользователи системы делились на две категории: привилегированные (военные) и обычные (гражданские). Для гражданских пользователей GPS в сигнале спутников была доступна лишь часть информации, которая позволяла определять координаты с ошибкой до нескольких десятков или даже сотен метров, в то время как для военных система работала с максимальной точностью — погрешность составляла не более нескольких метров. С 2000 года ограничения для гражданских пользователей были отменены.

    В период с 1978 по 1994 год на орбиту высотой около 20 тысяч км были выведены 24 основных спутника, обеспечивающих функционирование системы GPS. В дальнейшем было добавлено еще четыре резервных спутника. За работой системы следят четыре наземные станции, в обязанности которых входит корректировка навигационной информации и часов в спутниках, а также контроль работоспособности каждого из них. Коммерческая эксплуатация GPS началась в 1995 году. Владельцем всех спутников и наземных сооружений, несмотря на коммерциализацию GPS, является министерство обороны США.

    Спутники излучают фазомодулированный сигнал на двух частотах — L1 на 1575.42 МГц и L2 на 1227.60 МГц. Первая предназначена для гражданских пользователей, вторая — для военных. Информация, передаваемая спутником, делится на три категории: C/A-код, P-код и Y-код. C/A-код (Coarse Acquisition — грубое приближение) позволяет оценить местонахождение с точностью до 100 м. P-код (Precision code — прецизионный код) позволяет определять положение с точностью до нескольких метров. Y-код представляет собой шифрованную версию P-кода. Кодами типа C/A и P модулируется частота L1, частота L2 модулируется либо кодом P, либо кодом Y (в случае форс-мажорных обстоятельств, когда необходимо запретить использование сервиса GPS гражданским пользователям или противнику). К сигналу с частотой L1 подмешивается так называемое навигационное сообщение (Navigation message) — блок информации о текущем состоянии спутника (время, координаты). Навигационное сообщение имеет размер 25x1500 бит и передается блоками по 300 бит со скоростью 50 бит/с. Полное навигационное сообщение принимается за 12,5 минут.

    В системе GPS абонентский терминал представляет собой многоканальный приемник, имеющий возможность одновременно принимать сигнал с нескольких спутников. GPS-терминал — абсолютно пассивное устройство, не имеющее собственного передатчика. Принцип работы системы основан на сравнении временных задержек между принятыми сигналами с минимум трех (обычно — четырех-восьми) спутников и вычисление координат по удаленности от нескольких точек с известными координатами (то есть спутников). При этом приемник, рассчитав расстояние до всех спутников, сигнал которых он уверенно принимает, строит несколько сфер и по точкам пересечения этих сфер вычисляет приблизительное собственное местоположение на основе навигационной информации о координатах спутников, также приходящей с сигналом.

    Для увеличения точности определения координат (например, в геодезии и картографии точность в несколько метров может оказаться недостаточной) используется метод дифференциального GPS. При этом, помимо спутникового сигнала, приемник использует сигнал стационарного, мощного передатчика, положение которого известно и стабильно. Это позволяет нивелировать проблемы позиционирования, так как можно вычислить текущую ошибку системы, сравнив реальные координаты стационарного передатчика с данными, полученными через систему GPS.

    Спутник системы GPS на орбите

    Основной принцип использования системы - определение местоположения путём измерения моментов времени приема синхронизированного сигнала от навигационных спутников до потребителя. Расстояние вычисляется по времени задержки распространения сигнала от посылки его спутником до приёма антенной GPS-приёмника. То есть, для определения трёхмерных координат GPS-приёмнику нужно иметь четыре уравнения: «расстояние равно произведению скорости света на разность моментов приема сигнала потребителя и момента его синхронного излучения от спутников»:

    Здесь: - местоположение -го спутника, - момент времени приема сигнала от -го спутника по часам потребителя, - неизвестный момент времени синхронного излучения сигнала всеми спутниками по часам потребителя, - скорость света, - неизвестное трехмерное положение потребителя.

    История

    Идея создания спутниковой навигации родилась ещё в 50-е годы. В тот момент, когда СССР был запущен первый искусственный спутник Земли , американские учёные во главе с Ричардом Кершнером наблюдали сигнал, исходящий от советского спутника и обнаружили, что благодаря эффекту Доплера частота принимаемого сигнала увеличивается при приближении спутника и уменьшается при его отдалении. Суть открытия заключалась в том, что если точно знать свои координаты на Земле, то становится возможным измерить положение и скорость спутника, и наоборот, точно зная положение спутника, можно определить собственную скорость и координаты.

    Реализована эта идея была через 20 лет. В 1973 году была инициирована программа DNSS, позже переименованная в Navstar-GPS, а, затем, в GPS. Первый тестовый спутник выведен на орбиту 14 июля 1974 г., а последний из всех 24 спутников, необходимых для полного покрытия земной поверхности, был выведен на орбиту в 1993 г., таким образом, GPS встала на вооружение. Стало возможным использовать GPS для точного наведения ракет на неподвижные, а затем и на подвижные объекты в воздухе и на земле.

    Первоначально GPS - глобальная система позиционирования, разрабатывалась как чисто военный проект. Но после того, как в 1983 году вторгшийся в воздушное пространство Советского Союза самолёт Корейских Авиалиний с 269 пассажирами на борту был сбит из-за дезориентации экипажа в пространстве, президент США Рональд Рейган с целью не допустить в будущем подобные трагедии разрешил частичное использование системы навигации для гражданских целей. Во избежание применения системы для военных нужд точность была уменьшена специальным алгоритмом. [уточнить ]

    Затем появилась информация о том, что некоторые компании расшифровали алгоритм уменьшения точности на частоте L1 и с успехом компенсируют эту составляющую ошибки. В 2000 г. это загрубление точности отменил своим указом президент США Билл Клинтон.

    Спутники
    Блок Период
    запусков
    Запуски спутников Работают
    сейчас
    Запу-
    щено
    Не
    успешно
    Гото-
    вится
    Заплани-
    ровано
    I 1978-1985 10 1 0 0 0
    II 1989-1990 9 0 0 0 0
    IIA 1990-1997 19 0 0 0 11
    IIR 1997-2004 12 1 0 0 12
    IIR-M 2005-2009 8 0 0 0 7
    IIF 2010-2011 2 0 10 0 2
    IIIA 2014-? 0 0 0 12 0
    Всего 59 2 10 12 31
    (Последнее обновление данных: 9 Окт 2011)

    Техническая реализация

    Космические спутники

    Незапущенный спутник, экспонирующийся в музее. Вид со стороны антенн.

    Орбиты спутников

    Орбиты спутников системы GPS. Пример видимости спутников из одной из точек на поверхности Земли. Visible sat- число спутников, видимых над горизонтом наблюдателя в идеальных условиях (чистое поле).

    Спутниковая группировка системы NAVSTAR обращается вокруг Земли по круговым орбитам с одной высотой и периодом обращения для всех спутников. Круговая орбита с высотой порядка 20200 км является орбитой суточной кратности с периодом обращения 11 часов 58 минут; таким образом, спутник совершает два витка вокруг Земли за одни звёздные сутки (23 часа 56 минут). Наклонение орбиты (55°) является также общим для всех спутников системы. Единственным отличием орбит спутников является долгота восходящего узла, или точка, в которой плоскость орбиты спутника пересекает экватор: данные точки отстоят друг от друга приблизительно на 60 градусов. Таким образом, несмотря на одинаковые (кроме долготы восходящего узла) параметры орбит, спутники обращаются вокруг Земли в шести различных плоскостях, по 4 аппарата в каждой.

    Радиочастотные характеристики

    Спутники излучают открытые для использования сигналы в диапазонах: L1=1575,42 МГц и L2=1227,60 МГц (начиная с Блока IIR-M), а модели IIF будут излучать также на L5=1176,45 МГц. Навигационная информация может быть принята антенной (обычно в условиях прямой видимости спутников) и обработана при помощи GPS-приёмника .

    Сигнал с кодом стандартной точности (C/A код - модуляция BPSK (1)), передаваемый в диапазоне L1 (и сигнал L2C (модуляция BPSK) в диапазоне L2 начиная с аппаратов IIR-M), распространяется без ограничений на использование. Первоначально используемое на L1 искусственное загрубление сигнала (режим селективного доступа - SA) с мая 2000 года отключён. С 2007 года США окончательно отказались от методики искусственного загрубления. Планируется с запуском аппаратов Блок III введение нового сигнала L1C (модуляция BOC(1,1)) в диапазоне L1. Он будет иметь обратную совместимость, улучшенную возможность прослеживания пути и в большей степени совместим с сигналами Galileo L1.

    Для военных пользователей дополнительно доступны сигналы в диапазонах L1/L2, модулированные помехоустойчивым криптоустойчивым P(Y) кодом (модуляция BPSK(10)). Начиная с аппаратов IIR-M введён в эксплуатацию новый М-код (используется модуляция BOC(15,10)). Использование М-кода позволяет обеспечить функционирование системы в рамках концепции Navwar (навигационная война). М-код передается на существующих частотах L1 и L2. Данный сигнал обладает повышенной помехоустойчивостью, и его достаточно для определения точных координат (в случае с P-кодом было необходимо получение и кода C/A). Еще одной особенностью M-кода станет возможность его передачи для конкретной области диаметром в несколько сотен километров, где мощность сигнала будет выше на 20 децибел. Обычный сигнал М уже доступен в спутниках IIR-M, а узконаправленный будет доступен только при помощи спутников GPS-III.

    C запуском спутника блока IIF введена новая частота L5 (1176.45 МГц). Этот сигнал также называют safety of life (охрана жизни человека). Сигнал на частоте L5 мощнее на 3 децибела, чем гражданский сигнал, и имеет полосу пропускания в 10 раз шире. Сигнал смогут использовать в критических ситуациях, связанных с угрозой для жизни человека. Полноценно сигнал будет использоваться после 2014 года.

    Сигналы модулируются псевдослучайными последовательностями (PRN) двух типов: C/A-код и P-код. C/A (Clear access) - общедоступный код - представляет собой PRN с периодом повторения 1023 цикла и частотой следования импульсов 1023 МГц. Именно с этим кодом работают все гражданские GPS-приемники. P (Protected/precise)-код используется в закрытых для общего пользования системах, период его повторения составляет 2*1014 циклов. Сигналы, модулированные P-кодом, передаются на двух частотах: L1 = 1575,42 МГц и L2 = 1227,6 МГц. C/A-код передается лишь на частоте L1. Несущая, помимо PRN-кодов модулируется также навигационным сообщением.

    Тип спутника GPS-II GPS-IIA GPS-IIR GPS-IIRM GPS-IIF
    Масса, кг 885 1500 2000 2000 2170
    Срок жизни 7.5 7.5 10 10 15
    Бортовое время Cs Cs Rb Rb Rb+Cs
    Межспутниковая
    связь
    - + + + +
    Автономная
    работа, дней
    14 180 180 180 >60
    Антирадиационная
    защита
    - - + + +
    Антенна - - Улучшенная Улучшенная Улучшенная
    Возможность настройки
    на орбите и мощность
    бортового передатчика
    + + ++ +++ ++++
    Навигационный
    сигнал
    L1:C/A+P
    L2:P
    L1:C/A+P
    L2:P
    L1:C/A+P
    L2:P
    L1:C/A+P+M
    L2:C/A+P+M
    L1:C/A+P+M
    L2:C/A+P+M
    L5:C

    24 спутника обеспечивают 100 % работоспособность системы в любой точке земного шара, но не всегда могут обеспечить уверенный приём и хороший расчёт позиции. Поэтому, для увеличения точности позиционирования и резерва на случай сбоев, общее число спутников на орбите поддерживается в большем количестве (31 аппарат в марте 2010 года).

    Наземные станции контроля космического сегмента

    Основная статья: наземный сегмент спутниковой системы навигации

    Слежение за орбитальной группировкой осуществляется с главной контрольной станции, расположенной на авиабазе ВВС США Schriever, штат Колорадо , США и с помощью 10 станций слежения, из них три станции способны посылать на спутники корректировочные данные в виде радиосигналов с частотой 2000-4000 МГц. Спутники последнего поколения распределяют полученные данные среди других спутников.

    Применение GPS

    Приёмник сигнала GPS

    Несмотря на то, что изначально проект GPS был направлен на военные цели, сегодня GPS широко используются в гражданских целях. GPS-приёмники продают во многих магазинах, торгующих электроникой, их встраивают в мобильные телефоны , смартфоны , КПК и онбордеры . Потребителям также предлагаются различные устройства и программные продукты, позволяющие видеть своё местонахождение на электронной карте; имеющие возможность прокладывать маршруты с учётом дорожных знаков, разрешённых поворотов и даже пробок; искать на карте конкретные дома и улицы, достопримечательности, кафе, больницы, автозаправки и прочие объекты инфраструктуры.

    Высказывались предложения об интеграции систем Iridium и GPS.

    Точность

    Составляющие, которые влияют на погрешность одного спутника при измерении псевдодальности, приведены ниже :

    Источник погрешности Среднеквадратичное значение погрешности, м
    Нестабильность работы генератора 6,5
    Задержка в бортовой аппаратуре 1,0
    Неопределённость пространственного положения спутника 2,0
    Другие погрешности космического сегмента 1,0
    Неточность эфемерид 8,2
    Другие погрешности наземного сегмента 1,8
    Ионосферная задержка 4,5
    Тропосферная задержка 3,9
    Шумовая ошибка приёмника 2,9
    Многолучёвость 2,4
    Другие ошибки сегмента пользователя 1,0
    Суммарная погрешность 13,1

    Суммарная погрешность при этом не равна сумме составляющих.

    Типичная точность современных GPS-приёмников в горизонтальной плоскости составляет примерно 6-8 метров при хорошей видимости спутников и использовании алгоритмов коррекции . На территории США, Канады, Японии, КНР, Европейского Союза и Индии имеются станции WAAS , EGNOS , MSAS и т. д. передающие поправки для дифференциального режима, что позволяет снизить погрешность до 1-2 метров на территории этих стран. При использовании более сложных дифференциальных режимов, точность определения координат можно довести до 10 см. Точность любой СНС сильно зависит от открытости пространства, от высоты используемых спутников над горизонтом.

    В ближайшее время все аппараты нынешнего стандарта GPS будут заменены на более новую версию GPS IIF, которая имеет ряд преимуществ, в том числе они более устойчивы к помехам.

    Но главное, что GPS IIF обеспечивает гораздо более высокую точность определения координат. Если нынешние спутники обеспечивают погрешность 6 метров, то новые спутники будут способны определять местоположение, как ожидается, с точностью не менее 60-90 см. Если такая точность будет не только для военных, но и для гражданских применений, то это приятная новость для владельцев GPS-навигаторов.

    На октябрь 2011 года на орбиту выведены первые два спутника из новой версии: GPS IIF SV-1 запущен в 2010 году и GPS IIF-2 запущен 16 июля 2011 года.

    Всего первоначальный контракт предусматривал запуск 33 спутников GPS нового поколения, но потом из-за технических проблем начало запуска перенесли с 2006 года на 2010 год, а количество спутников уменьшили с 33 до 12. Все они будут выведены на орбиту в ближайшее время.

    Повышенная точность спутников GPS нового поколения стала возможной благодаря использованию более точных атомных часов . Поскольку спутники перемещаются со скоростью около 14000 км/ч (3.874км/с) (первая космическая скорость на высоте 20 200 км), повышение точности времени даже в шестом знаке является критически важным для триангуляции.

    Недостатки

    Общим недостатком использования любой радионавигационной системы является то, что при определённых условиях сигнал может не доходить до приёмника , или приходить со значительными искажениями или задержками. Например, практически невозможно определить своё точное местонахождение в глубине квартиры внутри железобетонного здания, в подвале или в тоннеле даже профессиональными геодезическими приемниками. Так как рабочая частота GPS лежит в дециметровом диапазоне радиоволн, уровень приёма сигнала от спутников может серьёзно ухудшиться под плотной листвой деревьев или из-за очень большой облачности. Нормальному приёму сигналов GPS могут повредить помехи от многих наземных радиоисточников, а также (в редких случаях) от магнитных бурь , либо преднамеренно создаваемые «глушилками» (данный способ борьбы со спутниковыми автосигнализациями часто используется автоугонщиками).

    Невысокое наклонение орбит GPS (примерно 55) серьёзно ухудшает точность в приполярных районах Земли, так как спутники GPS невысоко поднимаются над горизонтом .

    Существенной особенностью GPS считается полная зависимость условий получения сигнала от министерства обороны США.

    Теперь [когда? ] Министерство обороны США решило начать полное обновление системы GPS. Оно было запланировано достаточно давно, но начать реализовывать этот проект удалось только сейчас. В ходе обновления старые спутники заменят на новые, которые разработаны и произведены компаниями Lockheed Martin и Boeing. Утверждается, что они смогут обеспечивать точность позиционирования с погрешностью 0,5 метра.

    Реализация данной программы займёт некоторое [какое? ] время. В Министерстве обороны США утверждают, что полностью завершить обновление системы удастся только через 10 лет. Количество спутников изменено не будет, их по-прежнему будет 30: 24 работающих и 6 резервных.

    Хронология

    1973 Решение о разработке спутниковой навигационной системы
    1974-1979 Испытание системы
    1977 Приём сигнала от наземной станции, симулирующей спутник системы
    1978-1985 Запуск одиннадцати спутников первой группы (Block I)
    1979 Сокращение финансирования программы. Решение о запуске 18 спутников вместо запланированных 24.
    1980 В связи с решением свернуть программу использования спутников Vela системы отслеживания ядерных взрывов, эти функции было решено возложить на спутники GPS. Старт первых спутников, оснащённых сенсорами регистрации ядерных взрывов.
    1980-1982 Дальнейшее сокращение финансирования программы
    1983 После гибели самолёта компании Korean Airline , сбитого над территорией СССР, принято решение о предоставлении сигнала гражданским службам.
    1986 Гибель космического челнока Space Shuttle «Challenger» приостановила развитие программы, так как последний планировался для вывода на орбиту второй группы спутников. В результате основным транспортным средством была выбрана ракета-носитель «Дельта»
    1988 Решение о развёртывании орбитальной группировки в 24 спутника. 18 спутников не в состоянии обеспечить бесперебойного функционирования системы.
    1989 Активация спутников второй группы
    1990-1991 Временное отключение SA (англ. selective availability - искусственно создаваемой для неавторизированных пользователей округления определения местоположения до 100 метров) в связи с войной в Персидском заливе и нехваткой военных моделей приёмников. Включение SA 01 Июня 1991 года.
    08.12.1993 Сообщение о первичной готовности системы (англ. Initial Operational Capability ). В этом же году принято окончательное решение о предоставлении сигнала для бесплатного пользования гражданским службам и частным лицам
    1994 Спутниковая группировка укомплектована
    17.07.1995 Полная готовность системы (англ. Full Operational Capability )
    01.05.2000 Отключение SA для гражданских пользователей, таким образом точность определения выросла со 100 до 20 метров
    26.06.2004 Подписание совместного заявления по обеспечению взаимодополняемости и совместимости Galileo и GPS 1
    Декабрь 2006 Российско-американские переговоры по сотрудничеству в области обеспечения взаимодополняемости космических навигационных систем ГЛОНАСС и GPS.²

    См. также

    • Transit (первая спутниковая навигационная система, 1960-е - 1996)
    • Galileo (европейская навигационная система)
    • ГЛОНАСС (российская навигационная система)

    Примечания

    Литература

    • Александров И. Космическая радионавигационная система НАВСТАР (рус.) // Зарубежное военное обозрение . - М ., 1995. - № 5. - С. 52-63. - ISSN 0134-921X .
    • Козловский Е. Искусство позиционирования // Вокруг света . - М ., 2006. - № 12 (2795). - С. 204-280.
    • Шебшаевич В. С., Дмитриев П. П., Иванцев Н. В. и др. Сетевые спутниковые радионавигационные системы / под ред. В. С. Шебшаевича. - 2-е изд., перераб. и доп. - М .: Радио и связь, 1993. - 408 с. - ISBN 5-256-00174-4

    Ссылки

    Официальные документы и спецификации
    • Официальный сайт правительства США и системы GPS со статусом спутниковой группировки (англ.)
    Объяснения работы
    • Глобальные Навигационные Спутниковые Системы (GNSS). Как это работает? , gps-club.ru
    Совместимость с Gallileo и ГЛОНАСС
    • Галилео и GPS (англ.)
    • Совместное заявление по обеспечению взаимодополняемости и совместимости ГЛОНАСС и GPS ((недоступная ссылка) , копия)
    Разное

    Мы каждый день пользуемся системами навигации. Кому-то нужно проложить маршрут в незнакомое место, кто-то ищет новые пути дом-работа-дом, кто-то просто страдает топографическим кретинизмом. Мы редко задумываемся о том, как это работает и вспоминаем, что это как-то связано со спутниками только тогда, когда все рьяно тупит и маршрут не строится. А все же, как это работает и нужен ли для корректной работы GPS Интернет?

    Нет, Интернет не нужен. С этим разобрались. На самом деле, вокруг нашей планеты кружит 24 спутника (запущено почти 60, но не все уже в работе), с помощью которых каждый из нас может определить свое местоположение. У каждого спутника есть своя орбита, и за космические сутки (23 часа 56 минут) он успевает облететь Землю два раза. И все же, как люди додумались до создания спутниковой системы?

    В 80-х российские учёные занялись разработкой системы навигации по спутникам, которую в будущем назовут “ГЛОНАСС”. Первый спутник со стороны России был запущен в 1982 году, но идея не взлетела, потому что финансирование закончилось. Зато в это время подсуетились в США, заметив, что их соперник уже во всю выводит что-то на орбиту. Их проект начался еще в 1973 году, но шел неспешно, не торопясь, а после того, как “противник” вплотную занялся делом, американцы до 1993 года быстренько вывели на орбиту Земли 24 спутника и покрыли всю площадь планеты сигналом. Изначально, GPS задумывался исключительно как военная технология, но в процессе работы над проектом было решено дать возможность каждому использовать систему. Для этого абсолютная точность наведения была изменена с помощью специального алгоритма.

    Принцип работы

    24 спутника на высоте около 20 тысяч километров, вокруг планеты они расположены так, что в любой момент времени из любой точки Земли точно видно 4 спутника, максимум их может быть видно 12. В каждом спутнике имеются атомные часы, точность которых определена до наносекунд. Любой объект на Земле или над ней (самолеты, к примеру) определяют свое положение в зависимости от получаемых сигналов времени от разных спутников. Расстояние от трех спутников определяет точку на земном шаре. Для корректного определения вашего местоположения необходимы как минимум 3 спутника, но чем их больше, тем точность выше. Три сигнала дают нам три точки, вокруг которых мы можем начертить воображаемую сферу с радиусом, равным расстоянию до объекта. Пересечение двух сфер дает окружность возможных положений искомого объекта, а наличие третьей сферы дает возможность свести данные до одной конкретной точки – вашего местоположения. В целом каждое устройство с GPS-приемником ориентируется на данные от 3 до 12 спутников. Когда пользователь задает запрос (в машине, в смартфоне, просто gps-навигатор), он получает “ответочку” от трех-четырех и больше спутников с орбиты. Сигнал содержит данные о координатах спутника и времени на его часах. Получая сигналы из разных источников, учитывая разницу времени на Земле и в космосе, зная скорость передачи радиоволн, приемник рассчитывает с помощью уравнения расстояние до спутника (называется она псевдодальность) и, анализируя данные, определяет точное местоположение. Таким образом каждый человек может прокладывать маршруты и находить себя в пространстве в режиме реального времени.

    Интересным моментом в работе GPS является вопрос коррекции времени. Ведь точность в вопросах определения геолокации важна, особенно если речь идет о военной технологии, пусть она и стала общественным достоянием. Для корректной работы спутников была учтена теория относительности. Из-за того, что с Земли мы видим спутники в движении, специальная теория относительности утверждает, что часы на них должны идти медленнее на 7 микросекунд из-за меньшей скорости хода времени. Кроме того, положение спутника относительно Земли заставило ученых брать в расчет кривизну пространства и времени, ведь масса планеты меньше влияет на часы на спутнике, чем на ее территории (ход часов, расположенных ближе к массивному объекту, кажется медленнее, чем часов, находящихся дальше от объекта). Короче говоря, с Земли кажется, что время на спутнике идет медленнее с разницой в 38 миллисекунд в сутки. Ведь даже разность данных на 20 наносекунд привела бы к погрешностям в вычислениям геолокации каждые пару минут, и эта ошибка накапливалась бы. К примеру, за день точность определения местоположения объектов сбилась бы приблизительно на 10 км!

    Конечно, погрешности имеются. Каждый знает, что сигнал очень плохо считывается в помещении, ведь он плохо проходит через бетонные стены и металлические укрепления, в тоннеле или подвале не принимается совсем. Даже повышенная облачность может сбить точность информации. К тому же, если часы вашего GPS идут неверно, это тоже может привести к неправильным результатам.

    Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .